Master's thesis:

FPGA-based Active Pointing Correction of Optical Instruments on Small Satellites
 -

Tom Mladenov
Supervisor: prof. dr. ir. Luc Claesen External supervisor: Bram Vandoren

TABLE OF CONTENTS

- Introduction
- Problem Statement
- Hardware and Setup
- Results
- Conclusion Results - Conclusion

Introduction

3 Introduction - Problem Statement - Hardware and Setup Results - Conclusion

Introduction: CubeSats

- Mini-satellite standard Introduced in 1999
- Collaboration between Cal Poly and SSFL
- Highly standardized: 1U: $10 \times 10 \times 10 \mathrm{~cm}$

Figure 1. CubeSat size reference (image credit: NASA)

- On-orbit testing of various scientific payloads
- Wide spectrum of applications across the scientific community
- Made space more accessible

18/5/2018

4 Introduction - Problem Statement - Hardware and Setup Results - Conclusion

Introduction: CubeSats

Figure 3. Number of cubesats launched between 2000 and 2015, categorized by user [2]

18/5/2018
5 Introduction - Problem Statement - Hardware and Setup Results - Conclusion

KULEUVEN

Introduction: CubeSats

Figure 4. Number of cubesats launched between 2000 and 2015, categorized by research domain [2]

6 Introduction - Problem Statement - Hardware and Setup Results - Conclusion

Introduction: CUBESPEC

- Mission concept by KU Leuven Institute of Astronomy
- 6U cubesat dedicated to astronomy
- Detect exoplanets with transit photometry

Figure 5. The transit method [9]

Figure 6. Artist's impression of CubeSpec [10]
Requirements:

- High photometric resolution
- Arcsecond level pointing accuracy and stability

Figure 7. Graphical representation of a typical photometry measurement [9]
18/5/2018
7 Introduction - Problem Statement - Hardware and Setup Results - Conclusion

Problem Statement

Problem Statement

Rotational errors around \boldsymbol{x} and \boldsymbol{y} result in pointing errors $\mathbf{e}_{\mathbf{x}}$ and $\mathbf{e}_{\mathbf{y}}$

Figure 8. General satellite pointing scheme [5]

Problem Statement

Figure 9. KU Leuven ADCS prototype (image credit: KU Leuven)

- Attitude Determination and Control System (ADCS)
- Provides coarse attitude control (~ 100 arcsec)
- Arcsecond-level instrument pointing not possible with ADCS alone

Problem Statement

Star movement without active correction

Star movement with active correction

Figure 10. Star movement on image sensor without active correction (left) and with active correction (right) [6]

Solution

Figure 11. Control loop scheme with the active correction loop indicated in orange, ADCS loop in blue

18/5/2018
12 Introduction - Problem Statement - Hardware and Setup Results - Conclusion

KU LEUVEN

CUBESPEC: Solution

Figure 12. Beam steering in CUBESPEC [3]

Hardware and Setup

Hardware and Setup

Figure 13. Graphical representation of the active correction setup

Hardware and Setup: Optics

Figure 14. Optical configuration of the active correction setup
$18 / 5 / 2018$
16 Introduction - Problem Statement - Hardware and Setup Results - Conclusion

Hardware and Setup

1. Laser

2. Collimator + lens
3. Steering mirror
4. Guidance Sensor
5. Piezo amplifier
6. DACs
7. FPGA

Figure 15. The test setup installed on the optical bench

17 Introduction - Problem Statement - Hardware and Setup Results - Conclusion

The Control Loop

Figure 16. Diagram of the control loop

Hardware and Setup: FSM

- Tip-tilt fine steering mirror (FSM)
- One fixed pivot point and two actuators
- Resultant mirror movement is a linear combination of the actuator movement
- Linear combination of piezo driving required to move star in cartesian grid

Figure 18. Fine steering mirror

Figure 17. Steering mirror tip-tilt configuration
18/5/2018
19 Introduction - Problem Statement - Hardware and Setup -

\rightarrow UHASSELT

KU LEUVEN

Hardware and Setup: FSM

Figure 19. Front facing view of the steering mirror

Figure 20. Amplified stack piezo actuator (image credit: Piezodrive)
$860 \mu \mathrm{~m}$ stroke
~150V

KULEUVEN

Alternative FSM

10
 innovation
 for life

- Mirror steering via magnetic fields
- Larger optical steering range
- $\pm 2^{\circ}$ optical steering range (vs $\pm 0,75^{\circ}$)
- Highly linear
- Eddy current feedback sensors

Figure 21. TNO fine steering mirror based on variable reluctance actuators
(image credit: TNO)

- More complex interfacing

workshop on innovative technologies for space optics
 esa
 12-16 February 2018 | European Space Agency ESA/ESTEC | The Netherlands

18/5/2018
21 Introduction - Problem Statement - Hardware and Setup Results - Conclusion

KULEUVEN

FSM Calibration

Centroid domain

Actuator domain

Figure 22. Affine transformation from warped centroid domain to actuator values

FSM Calibration

Results

Centroiding Error

Figure 23. Results from static testing disabled piezo stage (left), piezos fixed at 50V (right)

FSM Calibration

IEZO STAGE CONTROL PANEL

FSM Calibration

FSM Calibration Pattern

Figure 24. Steering mirror calibration pattern

- FSM Calibration pattern
- Four mirror positions and corresponding DAC settings
- Calculation of the rigid transformation
- Steering resolution well below centroiding error

FSM Calibration

Figure 25. Calibration centroids

FSM Calibration

Figure 26. Cartesian actuator domain

KULEUVEN

FSM Calibration

Figure 27. Horizontal and vertical centroid movement (left) linearly transformed to the cartesian actuator grid (right)
$18 / 5 / 2018$
30 Introduction - Problem Statement - Hardware and Setup Results - Conclusion

FSM Calibration

31 Introduction - Problem Statement - Hardware and Setup Results - Conclusion

KULEUVEN

FSM Calibration - Test Pattern

Figure 28. Centroided steering mirror testpattern

Steering Mirror Frequency Response

Figure 29. Setup for the determination of the steering mirror frequency response

Steering Mirror Frequency Response

A. Frequency sweep
B. Piezo amplifiers
C. Steering mirror
D. Potentiometer
E. Computer

Figure 30. Photograph of the frequency response measurement setup

18/5/2018
34 Introduction - Problem Statement - Hardware and Setup Results - Conclusion

Steering Mirror Frequency Response

Figure 31. Steering mirror frequency response

Steering Mirror Frequency Response

Fine Steering Mirror Frequency Response

Figure 32. Close-up of the Steering mirror frequency response

Control Loop Results: Step Response

Openloop step response

Figure 33. Step response in open loop (framerate $=30 \mathrm{fps}$)

Control Loop Results: Step Response

Closed loop step response

Figure 34. Closed loop step response with
PI controller (framerate $=30 \mathrm{fps}$)

Control Loop Results: Disturbance Attenuation

Disturbances

Figure 35. Fine guidance sensor mounted on linear piezo stage

\bullet	UHASSELT

KULEUVEN

Control Loop Results: Disturbance Attenuation

Figure 36. $0,1 \mathrm{~Hz}$ disturbance, ~ 1 pixel $p-p$ magnitude, without and with closed loop

$$
\text { enabled (framerate = } 30 \text { fps) }
$$

Control Loop Results: Disturbance Attenuation

```
ax Command Prompt
C:Nuera\Iom\thesin\python>_
```


41 Introduction - Problem Statement - Hardware and Setup Results - Conclusion

Control Loop Results: Disturbance Attenuation

Figure 37. $0,1 \mathrm{~Hz}$ disturbance with, 15 pixel $p-p$ magnitude, without and with closed loop enabled (20dB attenuation)
\square UHASSEIT

Conclusion

Conclusion

Well-working piezo-FSM interface on FPGA:

- Translation from desired cartesian pixel coordinates to mirror actuator values
- Mirror steering resolution well below centroiding error
- Minimal extra centroiding noise

Universal testbed for active pointing correction:

- Disturbance injection (X-only) with translating piezo
- Live monitoring and control parameter adjustment
- Analysis of step/frequency response and disturbance rejection of the control loop
\triangle UHASSELT

Meanwhile...

18/5/2018
45 Introduction - Problem Statement - Hardware and Setup Results - Conclusion

Meanwhile...

Angular Rate Y (deg/s)

46 Introduction - Problem Statement - Hardware and Setup Results - Conclusion

\rightarrow	UHASSELT

KULEUVEN

Meanwhile...

47 Introduction - Problem Statement - Hardware and Setup Results - Conclusion

Meanwhile...

RIS April 5th, 2018

Thank you for your attention!

49 Introduction - Problem Statement - Hardware and Setup Results - Conclusion

References

[1] CalPoly, "Cubesat design specification," CubeSat Program, Calif. Polytech. State ..., vol. 8651, no. June 2004, p. 22, 2009.
[2] Achieving Science with CubeSats: Thinking Inside the Box. National Academies of Sciences, Engineering, and Medicine., 2016.
[3] KU Leuven, "Enabling spectroscopy of stars from a CUBESAT platform Meeting BELSPO 13-July-2017," 2017.
[4] M. W. Smith et al., "ExoplanetSat: detecting transiting exoplanets using a low-cost CubeSat platform," p. 773127, 2010.
[5] ECSS, "ESA pointing error engineering handbook ESSB-HB-E-003," Ecss, vol. 1 Edition, no. July, pp. 1-72, 2011.
[6] C. M. Pong, S. Lim, M. W. Smith, D. W. Miller, J. S. Villaseñor, and S. Seager, "Achieving high-precision pointing on ExoplanetSat: initial feasibility analysis," vol. 7731, p. 77311V, 2010.
[7] "BRITE (BRIght-star Target Explorer) Constellation / BRITE Austria, UniBRITE," eoPortal Directory, ESA. [Online]. Available: https://directory.eoportal.org/web/eoportal/satellite-missions/pag-filter/-/article/brite.
[Accessed: 03-Dec-2017].
[8] M. Nowak et al., "Reaching sub-milimag photometric precision on Beta Pictoris with a nanosat: the PicSat mission," vol. 2018, p. 99044L, 2016.
[9] Valerio Bozza, Luigi Mancini, and Alessandro Sozzetti. Methods of Detecting
Exoplanets, volume 428. 2016.
[10] KU Leuven. Enabling spectroscopy of stars from a CUBESAT platform Meeting
BELSPO 13-July-2017. Technical report, KU Leuven, 2017.
Cover: \quad http://estonianworld.com/technology/estonias-mission-moon-revolutionise-space-travel/

